The inner machinations of an electrical engineer is too complicated for me to understand, I think they might be thinking on a higher order to understand these circuits
Thats why I barely passed my electrical engineering class lol
You're misunderstanding the post. Yes, the reality of maths is that the integral is an operator. But the post talks about how "dx can be treated as an [operand]". And this is true, in many (but not all) circumstances.
∫(dy/dx)dx = ∫dy = y
Or the chain rule:
(dz/dy)(dy/dx) = dz/dx
In both of these cases, dx or dy behave like operands, since we can "cancel" them through division. This isn't rigorous maths, but it's a frequently-useful shorthand.
I do understand it differently, but I don't think I misunderstood. I think what they meant is the physicist notation I'm (as a physicist) all too familiar with:
∫ f(x) dx = ∫ dx f(x)
In this case, because f(x) is the operand and ∫ dx the operator, it's still uniquely defined.