Skip Navigation
Sunspots - 2024.06.07 [OC]
  • I love procrastinating on processing my images! I got set up early at a dark site last month and decided to shoot the sun while it was still up. There were a shitload of sunspots, including AR3697 in the bottom right. This sunspot group was the one that gave us the wonderful aurora back in May (back when it was known as AR3664)

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Moonlite Autofocuser

    • Astrozap BAADER AstroSolar Density 5 filter

    Acquisition:

    • Green filter - 5000 frames at gain 139 and 0.324ms exposure

    Capture Software:

    • Captured using sharpcap

    Processing:

    • Stacked the best 25% of frames in Autostakkert, 2X resample and autosharpened

    • Colorized using curves in Photoshop

    • More lightness/Hue Adjustments

    • Astrosurface wavelets to remove some grid artifacts from stacking

    • STF applied in pixinsight

    • Annotatation

  • Sunspots - 2024.06.07
  • I love procrastinating on processing my images! I got set up early at a dark site last month and decided to shoot the sun while it was still up. There were a shitload of sunspots, including AR3697 in the bottom right. This sunspot group was the one that gave us the wonderful aurora back in May (back when it was known as AR3664)

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Moonlite Autofocuser

    • Astrozap BAADER AstroSolar Density 5 filter

    Acquisition:

    • Green filter - 5000 frames at gain 139 and 0.324ms exposure

    Capture Software:

    • Captured using sharpcap

    Processing:

    • Stacked the best 25% of frames in Autostakkert, 2X resample and autosharpened

    • Colorized using curves in Photoshop

    • More lightness/Hue Adjustments

    • Astrosurface wavelets to remove some grid artifacts from stacking

    def going to be using this for any of my future planetary projects. Shoutout to Tom on the discord!

    • STF applied in pixinsight

    • Annotatation

  • NASA Selects SpaceX to develop the International Space Station US Deorbit Vehicle
  • Looks like a $843 million contract to deorbit it sometime in 2030, and the deorbit vehicle is going to burn up as well. They could maybe just send up a starship without any tiles/flaps at that point? Hopefully some of these commercial LEO stations really get going before then to replace it...

  • NASA Selects SpaceX to develop the International Space Station US Deorbit Vehicle
    www.nasa.gov NASA Selects International Space Station US Deorbit Vehicle - NASA

    NASA is fostering continued scientific, educational, and technological developments in low Earth orbit to benefit humanity, while also supporting deep space

    NASA Selects International Space Station US Deorbit Vehicle - NASA
    9
    Outstanding idea.
  • On the last test flight a few weeks ago both the booster and ship did powered soft landings in the ocean (even with the ship’s flap melting a bit)

  • Jones-Emberson 1 - The Headphones Nebula [OC]
  • I'm guessing it's called that because it's kinda headphone shaped. It was discovered in the 30's so I'm assuming only the brightest parts of the nebula were visible to the astronomers.

    This image is a combination of false color narrowband images for the nebula itself, plus true color RGB stars (the nebula is mostly red and a little blue in true color). If you zoom in to the center you can see the very blue white dwarf that caused the planetary nebula to form. Also for those curious this is what a single 10 minute long Ha exposure looks like (image total is 83.5 hours exposure). Captured over 33 nights from Jan-May 2024 from a bortle 9 zone.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 83 hours 30 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

    • Ha - 238x600"

    • Oiii - 247x600"

    • R - 54x60"

    • G - 53x60"

    • B - 54x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction 3x

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

    • ArcsinhStretch to slightly stretch nonlinear

    • iHDR 2.0 script (low preset) to stretch each channel the rest of the way.

    here's the link to the repo if you want to add it to your own PI install.

    RGB Linear:

    • ChannelCombination to combine monochrome R G and B frame into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator for star sharpening (correct only)

    • HSV Repair

    • StarXterminator to generate a stars-only image

    • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

    • Invert > SCNR > invert to remove magentas

    • Curves to saturate the stars a bit more

    Nonlinear:

    • PixelMath to combine stretched Ha and Oiii images into color image (/u/dreamsplease's palette)

    R = iif(Ha > .15, Ha, (Ha*.8)+(Oiii*.2))

    G = iif(Ha > 0.5, 1-(1-Oiii)*(1-(Ha-0.5)), Oiii *(Ha+0.5))

    B = iif(Oiii > .1, Oiii, (Ha*.3)+(Oiii*.2))

    • NoiseX again

    • Background Neutralization

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • Couple final curves

    • Resample to 65%

    • DynamicCrop

    • Annotation

  • Jones-Emberson 1 - The Headphones Nebula
  • I'm guessing it's called that because it's kinda headphone shaped. It was discovered in the 30's so I'm assuming only the brightest parts of the nebula were visible to the astronomers.

    This image is a combination of false color narrowband images for the nebula itself, plus true color RGB stars (the nebula is mostly red and a little blue in true color). If you zoom in to the center you can see the very blue white dwarf that caused the planetary nebula to form. Also for those curious this is what a single 10 minute long Ha exposure looks like (image total is 83.5 hours exposure). Captured over 33 nights from Jan-May 2024 from a bortle 9 zone.

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 83 hours 30 minutes (Camera at -15°C), NB exposures at unity gain and BB at half unity

    • Ha - 238x600"

    • Oiii - 247x600"

    • R - 54x60"

    • G - 53x60"

    • B - 54x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction 3x

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Narrowband Linear:

    • Blur and NoiseXTerminator

    • StarXterminator to completely remove stars (to be later replaced by the RGB ones)

    • ArcsinhStretch to slightly stretch nonlinear

    • iHDR 2.0 script (low preset) to stretch each channel the rest of the way.

    here's the link to the repo if you want to add it to your own PI install.

    RGB Linear:

    • ChannelCombination to combine monochrome R G and B frame into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator for star sharpening (correct only)

    • HSV Repair

    • StarXterminator to generate a stars-only image

    • ArcsinhStretch + HT to stretch nonlinear (to be combined with starless narrowband image later)

    • Invert > SCNR > invert to remove magentas

    • Curves to saturate the stars a bit more

    Nonlinear:

    • PixelMath to combine stretched Ha and Oiii images into color image (/u/dreamsplease's palette)

    R = iif(Ha > .15, Ha, (Ha*.8)+(Oiii*.2))

    G = iif(Ha > 0.5, 1-(1-Oiii)*(1-(Ha-0.5)), Oiii *(Ha+0.5))

    B = iif(Oiii > .1, Oiii, (Ha*.3)+(Oiii*.2))

    • NoiseX again

    • Background Neutralization

    • Shitloads of Curve Transformations to adjust lightness, hues, contrast, saturation, etc

    • even more curves

    • Pixelmath to add in the stretched RGB stars only image from earlier

    This basically re-linearizes the two images, adds them together, and then stretches them back to before. More info on it here)

    mtf(.005,

    mtf(.995,Stars)+

    mtf(.995,Starless))

    • Couple final curves

    • Resample to 65%

    • DynamicCrop

    • Annotation

  • Your dishwasher is better than you think (tips, tricks, and how they work) | Technology Connections [27:47]

    Word of warning for those eating: there's a shot of some dirty dishwasher water at 10:35

    Follow up connextras video

    4
    Sh2-64 and surroundings [OC]
  • Sh2-64 is the red nebula to the right of the image. It frames up pretty well with the more golden stars seen in the milky way core. I probably should've gotten more exposure time to help bring out some of the dark nebula details, but it was only clear for one night at the dark site (at least the night went perfectly, which is rare for trips out to the middle of nowhere). Captured on June 7th, 2024 from a Bortle 3 zone (Deerlick Astronomy Village)

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 5 hours 44 minutes (Camera at half unity gain -15°C)

    • L - 76x120"

    • R - 32x120"

    • G - 32x120"

    • B - 32x120"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel per panel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    Luminance Linear:

    • BlurXterminator (Correct only)

    • NoiseXterminator

    • HistogramTransformation + sketchpad's iHDR script (low preset) to stretch to nonlinear

    RGB Linear:

    • ChannelCombination to combine monochrom R G and B stacks into color image

    • SpectrophotometricColorCalibration

    • BlurXterminator (correct only)

    • HSV repair

    • ArcsinhStretch + iHDR script (low preset) to stretch to nonlinear

    Nonlinear Processing:

    • LRGBCombination using stretched L as luminance

    • DeepSNR

    • Various curve adjustments for lightness, contrast, hue, saturation, etc (with varying lum/star masks)

    • Slight SCNR green

    • ColorSaturation to boost the saturation of the Ha region

    • More curves

    • NoiseXterminator

    • invert > SCNR > invert to remove some magentas

    • LocalHistogramEqualization

    two rounds at scale 16 and 132 to target different sized structures

    • LOTS more curve adjustments

    • MultiscaleLinearTransform for chrominance noise reduction

    • Even more curves

    • Resample to 60%

    • Annotation

  • Sh2-64 and surroundings
  • Sh2-64 is the red nebula to the right of the image. It frames up pretty well with the more golden stars seen in the milky way core. I probably should've gotten more exposure time to help bring out some of the dark nebula details, but it was only clear for one night at the dark site (at least the night went perfectly, which is rare for trips out to the middle of nowhere). Captured on June 7th, 2024 from a Bortle 3 zone (Deerlick Astronomy Village)

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-290mc for guiding

    • Moonlite Autofocuser

    Acquisition: 5 hours 44 minutes (Camera at half unity gain -15°C)

    • L - 76x120"

    • R - 32x120"

    • G - 32x120"

    • B - 32x120"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Preprocessing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration per channel per panel

    • DrizzleIntegration (2x, Var β=1.5)

    • Dynamic Crop

    • DynamicBackgroundExtraction

    Luminance Linear:

    • BlurXterminator (Correct only)

    • NoiseXterminator

    • HistogramTransformation + sketchpad's iHDR script (low preset) to stretch to nonlinear

    RGB Linear:

    • ChannelCombination to combine monochrom R G and B stacks into color image

    • SpectrophotometricColorCalibration

    • BlurXterminator (correct only)

    • HSV repair

    • ArcsinhStretch + iHDR script (low preset) to stretch to nonlinear

    Nonlinear Processing:

    • LRGBCombination using stretched L as luminance

    • DeepSNR

    • Various curve adjustments for lightness, contrast, hue, saturation, etc (with varying lum/star masks)

    • Slight SCNR green

    • ColorSaturation to boost the saturation of the Ha region

    • More curves

    • NoiseXterminator

    • invert > SCNR > invert to remove some magentas

    • LocalHistogramEqualization

    two rounds at scale 16 and 132 to target different sized structures

    • LOTS more curve adjustments

    • MultiscaleLinearTransform for chrominance noise reduction

    • Even more curves

    • Resample to 60%

    • Annotation

  • Omega Centauri Globular Cluster
  • Omega Centauri is the largest globular cluster in the sky and contains about 10 million stars, but it's generally considered a southern hemisphere target since it's at -47 declination. It was right at the meridian for me while waiting for it to get completely dark out, so I tried shooting it at just 9 degrees up. Had to do short exposures without guiding, because even the dim flashlights of the other campers with me would overwhelm my guide camera. Captured on June 7th, 2024 from a Bortle 3 zone (Deerlick Astronomy Village)

    Places where I host my other images:

    Instagram | Flickr


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: 12 minutes (Camera at half Unity Gain, -15°C)

    • Lum - 20x10"

    • Red - 11x15"

    • Green - 13x15"

    • Blue - 12x15"

    • Flats- 30 per filter

    Capture Software:

    PixInsight Processing:

    • BatchPreProcessing

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    • DynamicCrop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Luminance:

    • BlurXTerminator (correct only mode)

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    RGB:

    • ChannelCombinaiton to combine monochrome R, G, B stacks into color image

    • BlurXTerminator (correct only mode)

    • SpectroPhotometricColorCalibration

    • HSV Repair

    • MMT for large scale chrominance noise reduction

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    Nonlinear:

    • LRGBCombination with stretched L as luminance

    • Several CurveTransformations to adjust lightness, contrast, colors, saturation, etc.

    • DeepSNR Noise reduction

    • HistogramTransformations

    • More curves

    • Resample to 70%

    • Annotation

  • [Community Spotlight] topview - See the earth from above
  • They at least have an ISS live stream going most of the time, but it's pretty boring at night or when they lose coverage

  • [MacRumors] iPhone SE 4 With Face ID Said to Be Priced Below $500
  • RIP my home button whenever my SE3 bites the dust

  • Atlanta Aurora timelapse
  • Wasn't expecting much with the last night's geomagnetic storm, but seeing the aurora come in on the camera was definitely an "oh shit" moment for me and my wife, especially when it got overexposed. The initial burst in the gif was very noticeable to the naked eye, despite our light pollution. Sadly it died down a bunch, but seems to have come back (although not as strong) after 3am (video timestamp is in UTC). Tonight definitely wont be as strong, but I'm hoping the camera might pick something up on another timelapse. Captured on May 10th, 2024 from Atlanta, GA

    (probably) Better quality version on youtube

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • ASI290mc + the all sky lens it comes with

    Acquisition:

    • looped 15" exposures at gain 160

    Capture Software:

    • Sharpcap

    Processing:

    • just PIPP to debayer and handbrake to convert it
  • Aurora from a distance in Southern Colorado
  • Hello, OP! Please include ALL acquisition and processing details.

  • With the setting moon and ferry
  • Hello, OP! Please include ALL acquisition and processing details.

  • Aurora over Wyoming
  • Hello, OP! Please include ALL acquisition and processing details.

  • Northern lights an hour before peak.
  • Timestamp is UTC

  • Northern lights an hour before peak.
  • Hi, OP! Please include ALL acquisition and processing details

  • Intense Aurora visible from Belgium
  • Was any processing done to this?

  • 3
    lefty7283 lefty7283 @lemmy.world
    Posts 90
    Comments 144
    Moderates