Intel skepticism aside, I hope they can deliver on this. M-series Macs seem streets ahead in terms of battery life right now and it doesn't feel great buying any other portable.
Apple makes low clocked, very wide SoCs, and are always the first customer of the most cutting edge silicon node. This is very expensive. And Apple can eat it with their outrageous prices.
Intel (and AMD) go more for "balance," with smaller cheaper dies and higher peak clocks. Their OEMs also "cheap out" by bundling a bunch of bloatware that also drains the battery to pad margins. You can find PCs with big batteries and better stock configs, but these are more expensive.
AMD is only just now getting into the "premium" game with the upcoming Strix Halo chip (M2 Pro-ish spec wise). Intel isn't there yet, but there are rumors they will as well.
Even if you remove all that crap, battery life is nowhere near the same vs the M-series chips. So while it may be a problem, it's still not anywhere close to the reason battery life sucks.
I think in terms of actually doing stuff AMD is close in terms of power draw (W/performance) but it's the little things like going to sleep and while completely idle that the entire MacBook draws so little power that needs to catch up -- and that's not entirely on the processor.
There were some benchmarks that showed Ryzen getting very close and in some cases beating with Zen 4 based Z1 Extreme already. They just aren't in laptops.
I couldn't find any clarification in the article but in guessing these are still x86_64 and from the description it seems like they've stacked a lot of different components into a single CPU core. Normally both those things would make it a big powerhouse so I'm not sure how it's going to beat arm on baterry which competes by having a smaller simpler ISA that doesn't need as much resources or complexity to process.
Extra components mean more specific hardware to complete each task. This more specific hardware can process the same data often faster and with less power consumption. The drawback is cost, complexity and these compose are only good for that one task.
CPUs are great because they are multipurpose and can do anything, given infinite time and storage. This flexibility means it isn’t as optimised.
People are not creating custom code to solve their own problems. They are running very common applications, using very common libraries for similar functions. So for the general user specific hardware for encryption, video codecs, networking etc will reduce power consumption and increase processing speed in a practical way.
Out of curiosity this wouldn't be automatically supported right? Like you'd need the os or dependent libraries to know about these special chips and take advantage of them for things like encryption for example. Is it common to define tailored hardware for this kind of functionality or is this intel trying to setup a very tailored mass market appeal product for laptops.
So they're promising ARM-beating battery life while just beginning to incorporate the kind of custom silicon that Apple has been integrating for years now?
Honestly a lot of the differences are business decisions. There is a balance between price, raw performance and power efficiency. Apple tend to focus exclusively on the latter two at the expense of price, while Intel (and AMD) have a bad habit of chasing cheap raw performance.
Decode overhead is fairly fixed, and proportionately has become tiny over the decades. Most larger instructions dispatch to microcode, and compilers know better than to use them much.
There's a price to x86, but for larger cores it's pretty small, we've learned to work around it.
Apple bothered to do the things Intel was too lazy to do for so long, particularly improve the ooo and other resources to where Intel didn't want to spend the silicon. Intel has always been cheap, nickel and diming their way out of performance, this is the cost.
They use a huge physical area of silicon for their high performance chips. The "Pro" line of M chips have a die size of around 280 square mm, the "Max" line is about 500 square mm, and the "Ultra" line is possibly more than 1000 square mm. This is incredibly expensive to manufacture and package.
They pay top dollar to get the exclusive rights to TSMC's new nodes. They lock up the first year or so of TSMC's manufacturing capacity at any given node, at which point there is enough capacity to accommodate other designs from other TSMC clients (AMD, NVIDIA, Qualcomm, etc.). That means you can just go out and buy an Apple device made from TSMC's latest node before AMD or Qualcomm have even announced the lines that will be using those nodes.
Those are business decisions that others simply can't afford to follow.
in guessing these are still x86_64 and from the description it seems like they've stacked a lot of different components into a single CPU core. Normally both those things would make it a big powerhouse so I'm not sure how it's going to beat arm on baterry
You realize that arm chips are also SoC's, containing all of those same, or similar, bits and bobs, right?