This very nice Romanian lady that taught me complex plane calculus made sure to emphasize that e^j*theta was just a notation.
Then proceeded to just use it as if it was actually eulers number to the j arg. And I still don’t understand why and under what cases I can’t just assume it’s the actual thing.
And it denotes an operation that gives you that fraction in operational algebra...
Instead of making it clear that d is an operator, not a value, and thus the entire thing becomes an operator, physicists keep claiming that there's no fraction involved. I guess they like confusing people.
Derivatives started making more sense to me after I started learning their practical applications in physics class. d/dx was too abstract when learning it in precalc, but once physics introduced d/dt (change with respect to time t), it made derivative formulas feel more intuitive, like "velocity is the change in position with respect to time, which the derivative of position" and "acceleration is the change in velocity with respect to time, which is the derivative of velocity"
I learned it the other way around since my physics teacher was speedrunning the math sections to get to the fun physics stuff and I really got it after hearing it the second time in math class.
But yeah: it often helps to have practical examples and it doesn't get any more applicable to real life than d/dt.
I always needed practical examples, which is why it was helpful to learn physics alongside calculus my senior year in high school. Knowing where the physics equations came from was easier than just blindly memorizing the formulas.
The specific example of things clicking for me was understanding where the "1/2" came from in distance = 1/2 (acceleration)(time)^2 (the simpler case of initial velocity being 0).
And then later on, complex numbers didn't make any sense to me until phase angles in AC circuits showed me a practical application, and vector calculus didn't make sense to me until I had to actually work out practical applications of Maxwell's equations.
I found math in physics to have this really fun duality of "these are rigorous rules that must be followed" and "if we make a set of edge case assumptions, we can fit the square peg in the round hole"
Also I will always treat the derivative operator as a fraction
i was in a math class once where a physics major treated a particular variable as one because at csmic scale the value of the variable basically doesn't matter. the math professor both was and wasn't amused