It's important to note that while this seems counterintuitive, it's only the most efficient because the small squares' side length is not a perfect divisor of the large square's.
He's saying the same thing. Because it's not an integer power of 2 you can't have a integer square solution. Thus the densest packing puts some boxes diagonally.
this is regardless of that. The meme explains it a bit wierdly, but we start with 17 squares, and try to find most efficient packing, and outer square's size is determined by this packing.
"fractal" just means "broken-looking" (as in "fracture"). see Benoît Mandelbrot's original book on this
I assume you mean "nice looking self-replicating pattern", which you can easily obtain by replacing each square by the whole picture over and over again
Why are there gaps on either side of the upper-right square? Seems like shoving those closed (like the OP image) would allow a little more twist on the center squares.
there's a gap on both, just in different places and you can get from one to the other just by sliding. The constraints are elsewhere so wouldn't allow you to twist.
The proof is done with raw numbers and geometry so doing it with physical objects would be worse, even the MS paint is a bad way to present it but it's easier on the eyes than just numbers.
Mathematicians would be very excited if you could find a better way to pack them such that they can be bigger.
So it's not like there is no way to improve it. It's just that we haven't found it yet.
These categories of geometric problem are ridiculously difficult to find the definitive perfect solution for, which is exactly why people have been grinding on them for decades, and mathematicians can't say any more than "it's the best one found so far"
For this particular problem the diagram isn't answering "the most efficient way to pack some particular square" but "what is the smallest square that can fit 17 unit-sized (1x1) squares inside it" - with the answer here being 4.675 unit length per side.
Trivially for 16 squares they would fit inside a grid of 4x4 perfectly, with four squares on each row, nice and tidy. To fit just one more square we could size the container up to 5x5, and it would remain nice and tidy, but there is then obviously a lot of empty space, which suggests the solution must be in-between. But if the solution is in between, then some squares must start going slanted to enable the outer square to reduce in size, as it is only by doing this we can utilise unfilled gaps to save space by poking the corners of other squares into them.
So, we can't answer what the optimal solution exactly is, or prove none is better than this, but we can certainly demonstrate that the solution is going to be very ugly and messy.
Another similar (but less ugly) geometric problem is the moving sofa problem which has again seen small iterations over a long period of time.
It's not necessarily the most efficient, but it's the best guess we have. This is largely done by trial and error. There is no hard proof or surefire way to calculate optimal arrangements; this is just the best that anyone's come up with so far.
It's sort of like chess. Using computers, we can analyze moves and games at a very advanced level, but we still haven't "solved" chess, and we can't determine whether a game or move is perfect in general. There's no formula to solve it without exhaustively searching through every possible move, which would take more time than the universe has existed, even with our most powerful computers.
Perhaps someday, someone will figure out a way to prove this mathematically.
It crams the most boxes into the given square. If you take the seven angled boxes out and put them back in an orderly fashion, I think you can fit six of them. The last one won't fit. If you angle them, this is apparently the best solution.
What I wonder is if this has any practical applications.
Do you know how inspiring documentaries describe maths are everywhere, telling us about the golden ratio in art and animal shells, and pi, and perfect circles and Euler's number and natural growth, etc? Well, this, I can see it really happening in the world.
My point was that it doesn’t break my brain at all when considering there’s an artificial constraint that affects efficiency and there’s just not going to be a perfect solution for every number of squares when you consider the problem for more than just 17 squares
The outer square is not given or fixed, it is the result of the arrangement inside. You pack the squares as tightly as you can and that then results in an enclosing square of some size. If someone finds a better arrangement the outer square will become smaller