A new login technique is becoming available in 2023: the passkey. The passkey promises to solve phishing and prevent password reuse. But lots of smart and security-oriented folks are confused about what exactly a passkey is. There’s a good reason for that. A passkey is in some sense one of two (or t...
You’re still entering the password or pin for your password manager. I genuinely do not see how this is better. It’s simply an alternative, not an improvement.
Password managers are, generally speaking, far more security conscious than the average website. I'd rather send a password to my password manager a couple times a day than send passwords to every website I interact with.
One click to confirm vs. 2-3 to autofill. Tiny gains in speed 🤷♀️ If you make a password manager even slightly more convenient than just using gregspassword123 for everything, you can onboard more normies.
Most people that have password managers are already using different passwords for each website. Usually randomly generated. What's the difference between that and a passkey?
Right. Most people that have password managers. Making a password manager easier and more convenient to use means some portion of people who aren't using one may start.
A pass key is the private key in a private/public key pair. The private key is stored in the TPM on your device. The website contains the public key. When you use your "one password" you're in effect giving your device permission to access the key storage in your TPM to fetch the private key to present it to the site.
What this means in practice is that if a website has a data breach they won't have your hashed password, only your public key which... is public. It doesn't and can't do anything on its own. It needs the private key, which again only you have and the website doesn't store, to do anything at all.
If you want to read more about it look into cryptographic key pairs. Pretty neat how they work.
When you use your “one password” you’re in effect giving your device permission to access the key storage in your TPM to fetch the private key to present it to the site.
Very small correction as I understand, but your private key is never presented. The web service should never interact with the private key directly. Your device is signing some bit of data, then the server uses your public key to verify that it was signed by your private key. Its a small distinction, but is one of the principal uses of asymmetric encryption is that the public key can truly be public knowledge and given to anyone, while the private key is 100% always only accessed by you the user.
Passkeys use cryptographic keys held client side which are never transmitted, they user cryptographic challenge-response protocols and send a single use value back. You can't intercept and reuse it unlike with passwords.
In general, yes. Big sites get hacked all the time. Passwords from those sites get cracked all the time. Anyone who uses the same password on multiple sites is almost guaranteed to have that password stolen and associated with a username/email at some point, which goes on a list to try on banks, paypal, etc.
Conversely, to my knowledge, there has been one major security breach at a password manager, LastPass, and the thieves got more-or-less useless encrypted passwords. The only casualty, at least known so far, is people who used Lastpass to store crypto wallet seed phrases in plaintext, who signed up before 2018 when the more secure master password requirements were put in effect, chose an insecure master password, and never changed it once in the four years prior to the breach.
It's not perfect, but the record is lightyears better.
Put it this way: Without a password manager, you're gambling that zero sites, out of every single site you sign on to, ever gets hacked. From facebook, google, netflix, paypal, your bank, your lemmy or mastodon instances, all the way down to the funny little mom-n-pop hobby fansite you signed up for 20 years ago that hasn't updated their password hashing functions since they opened it. With a password manager, you're gambling that that one site doesn't get hacked, a site whose sole job is not to get hacked and to stay on the forefront of security.
(Also, you don't even have to use their central servers; services like BitWarden let you keep your password record locally if you prefer, so with a bit of setup, the gamble becomes zero sites)
Most people do not. The average user has one or two passwords, and maybe swaps out letters for numbers when the site forces them to. Because remembering dozens of passwords is hard. If you, personally, can remember dozens of secure passwords, you're some kind of prodigy and the use-case for a password manager doesn't apply to you, but it still applies to the majority.
One doesn’t have to remember dozens. Just a basic algorithm for deriving it from the name of the site. Complex enough that it’s not obvious looking at a couple passwords but easy to remember.
This method works for me. I understand its dangers (can still correlate. Dozen passwords and figure out the algo). But it’s my current approach. I hate even discussing it since obscurity helps.
Your system is most likely way less secure than you think. I mean, possibly not since you're here, but most schemes are trivial to solve even automatically.
...and that doesn't really matter either, because so many people have such shitty passwords (and use the same ones everywhere) that noone really bothers checking for permutations when they have thousands of valid accounts.
But if truly enough people are convinced to be more secure your scheme may eventually become a target, too.
With passkeys (and password managers in general) the security gets so good that the vast majority of current attacks on passeord protection get obsolete.
I agree 100%. As mentioned, I rarely share my approach and I’ll be deleting that comment in a bit. It works well for me.
No hacker is attempting to decode the password algorithm because they don’t know of its existence on my logins, and they have thousands of better ways to go - as you said.
Okay, I'm glad you have a system, but it's not really relevant? I didn't say you should use a password manager. I said it's good for the majority of people who can only remember one or two passwords.
That's probably true, but perfect can't be the enemy of good. Getting everyone who currently uses the worst method (a single global password) to use a better method means that better method has to be easier than that, and as things lie right now, most security researchers agree that the method most likely to succeed is removing roadblocks, both client-side and server-side, to make password mangers even easier and more secure (whether you want to store it locally or not is really up to you, and again, it is already an option). We're not talking about people who already try to stay secure, or care about the exact details. You and I already know we care about security and do our best, presumably. The crucial thing is to onramp Bob Q. Public, the middle manager whose password on everything is rover73 because he loves his dog, and any solution more complicated than remembering one password and clicking one button is going to be too much change for him to get around to doing it
Onboarding new users securely is in the forefront of most minds in my industry because the current standard is a 12 word phrase written on paper, which most users throw in a cloud solution or screenshot.
The stakes are even higher in crypto where you’re protecting, without recourse, large sums of value. Passkeys are a critically needed solution for my industry. But they need coupled with a social or offline storage recovery mechanism.
You're entering your password into your password manager, which is stored by a company or entity whose entire job is to keep it secure. You're not giving your password, in any form, to the website or service you're accessing. When the website gets compromised, your hashed password is not in a database waiting to be cracked. All the attacker gets is a public key they can't use for anything.
The biggest difference: nothing sensitive is stored on the server. No passwords, no password hashes, just a public key. No amount of brute forcing, dictionary attacks or rainbow tables can help an attacker log in with a public key.
"But what about phising? If the attacker has the public key, they can pretend to be the actual site and trick the user into logging in." Only if they also manage to use the same domain name. Like a password manager, passkeys are stored for a specific domain name. If the domain doesn't match, the passkey won't be found.
This is something being sold in favor of passkeys but I can't ser how "more secure" it is for me.
I use Bitwarden, the domain name matching works exactly like passkey's. How more secure a passkey is, if it has 0 changes to this domain name detection?
That's the part where the server doesn't story any information that an attacker could use to log in. The attacker would need the private key, which is stored inside a secure chip on your device (unless you decide to store it in your password manager). All that's stored server side, is the public key.
When you're using a password, the server will store a hashed version of that password. If this is leaked, an attacker can attempt to brute-force this leaked password. If the server didn't properly store hash the password, a leak simply exposes the password and allows the attacker access. If the user didn't generate unique passwords for each site/server, that exposes them further to password spraying. In that case an attacker would try these same credentials on multiple sites, potentially giving them access to all these accounts.
In case of passkey, the public key doesn't need to be secret. The secret part is all on your end (unless you store that secret in the managed vault of your password manager).
I do agree that your risk is quite small if you're already
With a breach of the server then they can get your password the next time you log in and maintain persistent access until they're both kicked out and everybody has changed passwords.
With passkeys you don't need to do anything, they never had your secret.
Passkeys are asymmetric, meaning that the server only ever sees your public key. If the server gets breached, then only your public key is leaked, which isn't a big deal. Functionally, it's almost identical to SSH keys.
If you're using a hardware token like a YubiKey then you do need to enter your PIN before being able to use it.
The main benefit is that you cannot extract the Passkey from the secure element (the token cannot be transformed from what you have to what you know) and it cannot be phished through a fake domain as the challenge-response will not match.
Sounds like you need to get the latest patch for your wife. While you're doing that, you can add the password manager extension which should fix the issue.
Also write that password down somewhere in case you pass away in an accident or whatever. If you can afford it, a safety deposit box is great just because it can't get lost but is also wayyyyyy overkill.
Password managers are also updating to allow login with passkeys. I would give each family member a physical key that unlocks the rest. Since there are multiple, someone losing one isn’t a big deal and access can be revoked.