It doesn't look like these "bits" are binary, but "pieces of information" (which I find a bit misleading):
“Quick, think of a thing… Now I’ll guess that thing by asking you yes/no questions.” The game “Twenty Questions” has been popular for centuries as a thinking challenge. If the questions are properly designed, each will reveal 1 bit of information about the mystery thing. If the guesser wins routinely, this suggests that the thinker can access about million possible items in the few seconds allotted. Therefore, the speed of thinking—with no constraints imposed—corresponds to 20 bits of information over a few seconds: a rate of 10 bits/s or less.
The authors do draw a distinction between the sensory processing and cognition/decision-making, at least:
To reiterate: human behaviors, including motor function, perception, and cognition, operate at a speed limit of 10 bit/s. At the same time, single neurons can transmit information at that same rate or faster. Furthermore, some portions of our brain, such as the peripheral sensory regions, clearly process information dramatically faster.
How do you know there is no other definition of bit that is valid in a scientific context? Are you saying a word can't have a different meaning in a different field of science?
Actual neuroscientists do not create false definitions for well defined terms. And they absolutely do not need to define basic, unambiguous terminology to be able to use it.
Binary digit, or the minimum additional information needed to distinguish between two different equally likely states/messages/etc.
It's same usage as information theory, because information theory applies to, and is directly used by, virtually every relevant field of science that touches information in any way.
Information is information. Everything can be described in binary terms.
Binary digit is how actual brain scientists understand bit, because that's what it means.
But "brains aren't binary" is also flawed. At any given point, a neuron is either firing or not firing. That's based on a buildup of potentials based on the input of other neurons, but it ultimately either fires or it doesn't, and that "fire/don't fire" dichotomy is critical to a bunch of processes. Information may be encoded other ways, eg fire rate, but if you dive down to the core levels, the threshold of whether a neuron hits the action potential is what defines the activity of the brain.
I think what you really mean is brains are not numeric. It's the "digit" part that is objectionable, not the "binary" part, which as an adjective for "digit" just means a way of encoding a portion of a number.
But in the end it's a semantic argument that really doesn't have a lot to do with the thesis.
But it isn't stored that way and it isn't processed that way. The preprint appears to give an equation (beyond my ability to understand) which explains how they came up with it.
Your initial claim was that they couldn't be measured that way. You're right that they aren't stored as bits, but it's irrelevant to whether you can measure them using bits as the unit of information size.
Think of it like this: in the 1980s there were breathless articles about CD ROM technology, and how, in the future, "the entire encyclopedia Britannica could be stored on one disc". How was that possible to know? Encyclopedias were not digitally stored! You can't measure them in bits!
It's possible because you could define a hypothetical analog to digital encoder, and then quantify how many bits coming off that encoder would be needed to store the entire corpus.
This is the same thing. You can ADC anything, and the spec on your ADC defines the bitrate you need to store the stream coming off... in bits (per second)
As has been shown elsewhere in this thread by Aatube a couple of times, they are not defining 'bit' the way you are defining it, but still in a valid way.
So ten concepts per second? Ten ideas per second? This sounds a little more reasonable. I guess you have to read the word “bit” like you’re British, and it just means “part.” Of course this is still miserably badly defined.