The rods from God's idea is insane and won't work.
We had this back when the Russians announced they were going to drop conventional ordinance from space, and everyone pointed out that they would be lucky to hit the right continent, let alone Ukraine. In order to make this actually work, you would have to have an active aiming system. Which you know, is a missile.
From a purely physical point of view, is that realistic?
If all of its energy is kinetic, it means that the energy must result from it's potential energy+any fuel it is propelled with. Ignoring air-friction and terminal velocity for free falling objects, that means that still the energy of a nuclear weapon is required to bring this thing up into space, or stored as fuel for its propulsion.
So unless the projectile is assembled in space, any rocket bringing it into space will contain at least the energy of a nuclear warhead. Gotta be a very nervous launch, knowing that any failure will result in a fire with the energy of a nuke.
There has actually been multiple occasions were Russia was caught trying to break that treaty, kind of interesting to think about. The question is if Russia does actually mobilize an orbital nuclear weapon someday like an advanced Sarmat or some kind of space bomber, will the nations of the world act in unison or watch in silence?
Have fun with that existential dread while I work on my laundry.
If anyone wants some good sci-fi, I recommend The Expanse, both the books and the show. They make great use of kinetic impactors, especially Nemesis Games.
Science fiction always challenges my suspension of disbelief is when people land on planets to skirmish with conventional weapons instead of, say, throw a big heavy aerodynamic solid rock from space.
A system described in the 2003 United States Air Force report called Hypervelocity Rod Bundles[10] was that of 20-foot-long (6.1 m), 1-foot-diameter (0.30 m) tungsten rods that are satellite-controlled and have global strike capability, with impact speeds of Mach 10.[11][12][13]
The bomb would naturally contain large kinetic energy because it moves at orbital velocities, around 8 kilometres per second (26,000 ft/s; 8,000 m/s; Mach 24) in orbit and 3 kilometres per second (9,800 ft/s; 3,000 m/s; Mach 8.8) at impact. As the rod reenters Earth's atmosphere it would lose most of its velocity, but the remaining energy would cause considerable damage. Some systems are quoted as having the yield of a small tactical nuclear bomb.[13] These designs are envisioned as a bunker buster.[12][14] As the name suggests, the 'bunker buster' is powerful enough to destroy a nuclear bunker. With 6–8 satellites on a given orbit, a target could be hit within 12–15 minutes from any given time, less than half the time taken by an ICBM and without the launch warning. Such a system could also be equipped with sensors to detect incoming anti-ballistic missile-type threats and relatively light protective measures to use against them (e.g. Hit-To-Kill Missiles or megawatt-class chemical laser). The time between deorbit and impact would only be a few minutes, and depending on the orbits and positions in the orbits, the system would have a worldwide range. There would be no need to deploy missiles, aircraft, or other vehicles.
In the case of the system mentioned in the 2003 Air Force report above, a 6.1 by 0.3 metres (20 ft × 1 ft) tungsten cylinder impacting at Mach 10 (11,200 ft/s; 3,400 m/s) has kinetic energy equivalent to approximately 11.5 tons of TNT (48 GJ).[15] The mass of such a cylinder is itself greater than 9 short tons (8.2 t), so the practical applications of such a system are limited to those situations where its other characteristics provide a clear and decisive advantage—a conventional bomb/warhead of similar weight to the tungsten rod, delivered by conventional means, provides similar destructive capability and is far more practical and cost-effective.[16][17][18]
The highly elongated shape and high mass of the projectiles are intended to enhance sectional density (and therefore minimize kinetic energy loss due to air friction) and maximize penetration of hard or buried targets. The larger device is expected to be quite effective at penetrating deeply buried bunkers and other command and control targets.[19]
The weapon would be very hard to defend against. It has a very high closing velocity and a small radar cross-section. The launch is difficult to detect. Any infrared launch signature occurs in orbit, at no fixed position. The infrared launch signature also has a much smaller magnitude compared to a ballistic missile launch. The system would also have to cope with atmospheric heating from re-entry, which could melt non-tungsten components of the weapon.[20]
The phrase "rods from God" is also used to describe the same concept.[21] An Air Force report called them "hypervelocity rod bundles".[2]