That’s not what this is about. He’s complaining about hardware developers putting more work on kernel developers by making them patch all the CPU vulnerabilities that are introduced by trying to increase performance.
Not trying to shill for Apple or anything, but I have found MacBooks (excluding the 2015 MacBook, and the 2016-2020 Air and Pro models) to be extremely stable and reliable, especially since they use their custom ARM CPU/SOCs. It reminds me of the good old PowerPC days, these machines were also reliable, basically unbreakable like a tank. In build quality, hardware and software. With the ARM transition, Apple really appears to have brought back the glory days of computing (unfortunately not in terms of upgradability and repairability, but at least in quality, stability and reliability).
I'm even more excited for the continiously improving Linux support on these devices - thanks to the amazing Asahi Linux (!asahilinux@lemmy.world) project. Also consider following them on Mastodon: @AsahiLinux@treehouse.systems
I will say I've never ever even once had an issue with my M1 pro 16", can't say that about any other laptop I've owned (be it battery swelling, software bugs, or "issues" one learns to live with like sleep mode causing boot crashes or sleep mode draining battery %). Kinda amazing in hindsight.
In the last 10 years there has been a seemingly noteworthy uptick in hardware bugs in both intel and amd CPUs. Security researchers find and figure out potential attack vectors that rely on these bugs (ex. Specter/Meltdown). Then operating systems have to put workarounds in their kernel code to ensure that these hypothetical attack vectors are accounted for, at the cost of performance and more complicated code.
Linus is saying how annoyed he is with all this extra work they have to do, resulting in worse performance, all to plug vulnerabilities that we've never actually seen any real attackers use. He's saying instead we should just write the code how it should be, and if the hardware is insecure, let it be the hardware company's problem when customers don't use the hardware.
The problem is, customers will continue to use the hardware and companies who need a secure OS (all of them) will opt to not use Linux if it doesn't plug these holes.
Plus a lot of these bugs don't get fixed, because they exist to allow the processors to "look ahead" for improved performance, at least on unmitigated benchmark tests.
Notably, that's not what he says. He didn't say in general. He said "for once, [after this already long discussion], let's push back here". (Literally "this time we push back")
who need a secure OS (all of them) will opt to not use Linux if it doesn’t plug these holes
I'm not so sure about that. He's making a fair assessment. These are very intricate attack vectors. Security assessment is risk assessment either way. Whether you're weighing a significant performance loss against low risk potentially high impact attack vectors or assess the risk directly doesn't make that much of a difference.
These are so intricate and unlikely to occur, with other firmware patches in line, or alternative hardware, that there's alternative options and acceptable risk.
This is about Spectre, not about buggy hardware implementations.
Spectre is a fundamental flaw in speculative execution that means it can leak information, so it's a security vulnerability. Apparently Intel has been imposing draconian requirements on software to work around the issue rather than fixing it in hardware, which is obviously what they should do, but is not at all trivial.
hardware is like your computer, stuff like the cpu and ram. software is like the programs on that computer. linus torvalds makes a program that has to deal with the details of the computer (the linux kernel). as such, they have to work around problems in the hardware.
Fully validating hardware is an insane task that hasn't been really done in years. It would mean 5 years between chip releases and a 2-5X in cost to produce, and people wouldn't follow the validated configs anyways. If we followed the validated hardware spec we would have 50 min boot times and not go past a 3.5Ghz clock.
People have the choice today on if they want to run on validated hardware. You can opt in to get a 2.8Ghz part that supports 2666MT/s that is mostly tested and validated, or you can get a 5Ghz part that supports 6000MT/s that is only partially validated. They cost the same price. What do folks think people pick?
Who said anything about fully validating hardware? "Hardware vendors should solve their own problems" is not the same as "hardware vendors should fully validate their products".
Is this really the hardware vendor's problem though? It's the consumers problem.
I bring up full validation because the concern here is putting in a speculative fix. If the ask is, why was the hardware like that in the first place the answer is because it can't be fully validated. If the ask is why should a speculative fix go into the Kernel it is because the consumers are not on top of tree and if a fix has a chance of never being exploited it needs to be pulled in years ahead so it goes into an LTR that customers migrate to BEFORE the issue comes up.