From a grid stability point, you can't produce more than is used, else you get higher frequencies and/or voltages until the automatics shut down. It's already a somewhat frequent occurence in germany for the grid operator to shut down big solar plants during peak hours because they produce way more power than they can dump (because of low demand or the infrastructure limiting transfer to somewhere else)
Negative prices are the grid operator encouraging more demand so it can balance out the increased production.
If only there were some way to take energy made from sunshine and store it in some form for later. Like in a battery. Or as heat. Or in a flywheel. Or just use the energy for something we'd really like to do as cheaply as possible. Like sequester CO2. Or desalinate water. Or run industries that would otherwise use natural gas.
This is idiotic. The fact is your electricity transmission system operator has to pay a lot of money to keep the grid stable at 50 or 60Hz or your electronics would fry. With wind and especially with solar power, the variable output is always pushing the frequency one way or the other, and that creates a great need for costly balancing services. Negative pricing is an example of such a balancing service. Sounds good, but for how long do you think your electricity company can keep on paying you to consume power?
You don't get paid when the sun shines, and you don't get paid for when it does not.
You had to pay for building the solar panels and maintaining them. Corporate greed aside none sane would like their tax money either to be spent on producing electricity when it's not needed.
Next step for renewables must be storage that is cheap enough for it to beat having fossil fuel on standby.
Didn't China have a community use lots of solar and they ended up with such a glut of excess power that they didn't know what to do with it?
All communities should have that. Electricity should be free and it would be plausible to make it free. Except for maintenance costs, but that would be peanuts compared to what we pay now.
The "problem" of negative energy costs is easy to solve, but quite costly.
Build water desalination/carbon capture and storage/hydrogen generation plants that only run when the price goes below 0; even though these are very energy intensive, they would help stabilize the grid.
Then build more solar; you want to try to have the daytime price stay in the negative as often as possible.
Build big batteries on the grid get the solar in the middle of the day and release the engery back into it a 17:00 when everyone gets home and puts on the shower and kettle at the same time
That's not what they were saying, they were saying that it's not economical to have an abundance of electricity when people need it the least, and little or no electricity when people need it the most. It would be one thing if utilities could sell solar electricity at peak demand hours for a higher price, to make up the difference, but that's just when solar generation is slowly down significantly or stopped entirely.
And, yes, I know that battery storage could theoretically solve this, but battery technology is not currently capable of providing electricity for the entirety of the time we need it. New technologies are being developed right now with the goal of achieving long term grid storage, but they are still in the R&D phase. I'm confident a suitable storage technology, or multiple technologies, will eventually come to market, but it's going to take a while.
Regardless, it is likely we will always need some kind of on-demand power generation to supplement renewables and maintain grid stability, and I think nuclear is the best option.
But we shouldn't act like the problem is that utilities are just greedy. Many utilities aren't even for-profit companies, as many are either not-for-profit cooperatives or public entities. Sure, there are also many for-profit power utilities as well, maybe even some with connections to the fossil fuel industry, but generally power utilities are not some great villain.
The real issue isn't the overproduction per se, but that we (globally speaking) don't have enough cheap scalable responsive distributed storage. I'm writing this from a privileged position since Switzerland has loads of dams and can pump water during such peaks. But it's clear that's not the solution everywhere. I hope a good cheap mass producible battery tech with less rare earth metal requirements comes along soon.
The real special bit is that this crap isn't coming from, say Harvard, who one expects is all about business, but MIT which is supposed to be about Science and Engineering.
Before commenting, you should know there are 2 types of solar panels:
the ones owned by people (which may or may not feed into the grid)
the ones owned by corporations
The article is probably about the 2nd kind (if you can only sell energy when there is a surplus, your company will fail), while the twitter user makes it seem like the 1st kind was meant. We probably need to built more of both types. Identify what type the other commenters are talking about before getting in any arguments here.
Every time someone mentions "oh no solar is producing too much energy" I think of this deranged Forbes article from a few years back.
alt-text
Microsofts billionaire founder Bill Gates is financially backing the development of sundimming technology that would potentially......{blahblah global cooling}
Negative prices are an opportunity and people will take advantage. This would be the perfect time to change batteries, make hydrogen, send compressed air into an old mine or refill a dam
They aren't wrong though, storage technology is only starting to come to market in significant enough capacity to be beneficial.
And for storage plants to be financially viable energy costs during the day need to be really cheap, so they can raise them at night and make a significant enough profit to break even.
Call me stupid, but why don't they just charge enough to cover costs and a bit of profit? The current pricing model is broken if you can't run a solar plant profitably.
That's not at all what MIT is talking about here. This goes into detail around the challenges tied in rolling out grid scale solar in a way that aligns with supply and demand curves, and how to make sure we're able to capture overproduction so that we can use it when not enough is being produced. It's a complex shift to work out in our over 100+ year grid production structure, and has been an ongoing discussion across the energy sector. But you know...memes and shit.
The problem with solar panels is that they produce energy the most when you least need it, and they produce the least when you most need it. Fuck the market. It's a resource storage and production management problem.
A case of the quiet part being spoken outloud. That's my beef with nuclear energy as well - why? Solar power clearly work, and best of all, it isn't centralized. Same with wind power. It even works in circumstances you might have to shut down nuclear power plants due to excessive heat. You even have to worry about the increasing load on the grid because they are easier to distribute. It needs energy storage, and there's no shortage of means for energy storage.
Nuclear power plants are going to be charging you the same as coal plants for energy as long as they are owned by market tycoons. Nuclear power plants make the best sense in an ideal world where society matters and there aren't people gaming the market. We do not live in an ideal world.
The actual problem with painel solars, is that they require an existing infrastructure to sync with the AC grid but if that infrastructure fail, or just get out of sync, it could trigger every painel solar fail safe making the damage 10x worse especially if the infrastructure depends on the solar panels to supply most of the energy
But this basically is the reason why no one wants to build a nuclear plant. Such a power plant will basically run at a massive loss during high solar and wind energy supply. A nuclear reactor takes a long time to shutdown once the reaction has started. So it can’t dynamically scale the production based on market demands. A nuclear power plant cost at least $8 billion and 8 years to build and needs to be operating for 50 years to see a return on investment. But during those 50 years wind, solar and battery tech will obviously advance as well. It’s basically a given that a nuclear power plant is never going to make the investment back. Hence why no one wants to build one. And therefore the government should do it.