Skip Navigation

You're viewing a single thread.

26 comments
  • Except the first assumption that e^x = its own integral, everything else actually makes sense (except the DX are in the wrong powers). You simply treat the "1" and "integral dx" as operators, formally functions from R^R into R^R and "(0)" as calculating the value of the operator on a constant-valued function 0. EDIT: the step 1/(1-integral) = the limit of a certain series is slightly dubious, but I believe it can be formally proven as well. EDIT 2: I was proven wrong, read the comments

    • is it immediately obvious that the inverse of the operator L is 1/L though? Much less the series expansion for the operator...

      If you try to fill in the technical details it will be a lot of work compared to a simpler calculus based alternative

      But then again some Mathematicians spent the better half of the century formalizing the mathematics used by Physicists like Dirac (spoiler: they all turned out to be valid)

    • That's the thing about physicists doing math. They know the universe already works. So if they break some math on the way to an explanation, so what? You can fix math. They care about the universe. It's pretty cool sometimes. Like bra-ket notation is really an expression the linear algebra concepts of dual space and adjoints. But to a physicist, it's just how the math should work if it is to do anything useful.

      So yeah, this post looks like nonsense. Because it is. But there is a lesson that "math" should work like this, and there is utility in pushing the limits. No pun intended.

      Edit: I'm not claiming this is a useful application. It's circular reasoning as this post's parent alludes to.

    • If you "fill in" the indefinite integral with a (definite integral with) bounds -infinity to x, then I think the first step works. I'm not 100% how to deal with the 1/(1-integral) step, but my guess would be to transform to the Laplace domain because Laplace transform analysis is "aware of" convergence issues, i.e. the region of convergence "pops out" when calculating the transform, or it's present in the lookup table entry.

26 comments